## Chapt 6 X-rays

- 6.1. Discovery of X-rays & their wave nature
- 6.2. Mechanisms for producing X-rays
- 6.3. Compton scattering
- 6.4. Absorption of X-rays
- 6.5. Summary

# 6.1. Discovery of X-rays & their wave nature

#### 6.1.1.Discovery of X-rays

- In 1895, Roentgen performed an experim.on a gas discharge in a chathode ray tube in a darkroom, found a fluorescent screen exhibited slight fluorescence by a mysterious new rays:
  - Traveled straight
  - Strong penetrating power (neither reflection nor refraction)
  - Not deflected by a Magnetic field
  - -x -rays

- People realized that:
  - x –rays are energetic em wave with strong penetrating power
  - X-rays are EM wave with short wave length
    - (L) :0.001nm 1 nm
    - -Soft x ray: L> 0.1nm
    - -Hard x rays: L< 0.1nm

#### 6.1.2.X-ray tube (1)



electrons from heated K are accellerated by E and strike on the Anode , producing x-rays

#### 6.1.3. Wave nature of X-rays

- Accelerating charged particles→radiate EM waves
- In x-ray tube, high speed Es stop on the Anode→ radiate EM waves
- X-rays ← → EM waves
- Charaters of wave
  - polarization, diffraction

#### 6.1.4 Polarization of X-rays

- Transverse wave: oscillating direction is perpendicular to the propagation direction
  - EM wave is transverse wave (E, K)
  - PL concept only holds for transverse wave
- Linear PL: *E oscillates along a fixed direction*
- Circular PL: *E moves along a circle*



unPL waves strike on the 1st scatterer in z perpend. to xy-plan, producing y-PL wave in x direction ; after 2nd scattering,one observes y-PL waves in the z -, but not in the y- direction.

#### 6.1.5. Diffraction of X-rays

- EM wave passes through a slit→diffraction (Slit size is the same order as Wavelength WL)
- Typical  $\lambda$  of x-rays :0.1nm (hard to build slit)
- crystal: atoms (lattice) in ordered -structure
  - 晶格常数d: crystal lattice distance is in the same order as λ of x-rays
- crystal is a natural grating (set of slits)

#### Crystal planes





### Bragg Law

When the path difference is an integral of WL, there exists a maximum in diffraction intensity

$$2d\sin\theta = n\lambda$$
 (*n* = 1, 2, 3, L)



- Giving incident direction of X-ray, WL λ and cristal→a set of Bragg equations
  - Many sets of crystal planes
  - − One set of crystal palne → one Bragg Equation

$$2d_{1}\sin\theta_{1} = n_{1}\lambda \qquad 2d_{2}\sin\theta_{2} = n_{2}\lambda \qquad 2d_{3}\sin\theta_{3} = n_{3}\lambda$$

#### Application of X-ray diffraction

- -Giving  $\theta$ ,  $\lambda$ , on can measure d study crystal structue and properties,
- Giving θ, d , one can measure λ ——
  using X ray light spectra, to study
  Atoms structure

 $2d\sin\theta = n\lambda$ 

Methods to observe x-ray diffraction

- Laue film method
  - -Using coutinuous WL X-ray to a single crystal
  - -Giving direction, arbitary  $\ensuremath{\mathbf{WL}}$
  - Each set of crystal planes, satisfy  $2d\sin\theta = n\lambda$ 
    - -Gives a Laue spot, the position stands for the direction of the related planes →obtain all maximums. Each muximum has a bright spot





- Polycrystalline powder method
  - -Using fixed WL x ray on polycrystalline powder, the planes directions are arbitrary
- , the set of planes satisfing con-centric circle

$$2d\sin\theta = n\lambda$$
 gives a

 $\rightarrow$  many circles  $\leftarrow \rightarrow$  many set of planes





#### 6.2. Mechanisms for producing X-rays

#### 6.2.1.X-ray emission spectra

X-ray emission intensity versus Wavelength



Characteristic spectra

Peaks depend on target



#### 6.2.2. Cont. Spectra--Bremsstrahlung

#### • Bremmsstralung

- Charged particles in acceleration produce EM waves
- Continuous spectra
  - X-ray tube, charged Es reach the target, their speed changes continuously under the Coulomb field of the target atoms, induce cont. x-ray spectra
- The minimum WL depends on V
- X-ray emission due to de-acceleration



## $\lambda_{\min}$ confirms once more the success of quantum theory

6.2.3. Charact spectra—transitions of the inner shell electrons

- Threshold energy or ionization energy:
   for removing one e from *n*=1 shell
- $K_{\alpha}$  spectra energy : energy difference from n=2and n=1
- Atomic light spectra is determined by the
- External electrons , their configuration's periodic behavior leads to its periodic
- $-\mathbf{K}_{\alpha}$  spectra determined by transitions in inner shells

- Giving elements, charat. spectra contain several series
  - K series spectra:  $K_{\alpha}$ ,  $K_{\beta}$ ,  $K_{\gamma}$ , ...,
  - L series spectra :  $L_{\alpha}$ ,  $L_{\beta}$ ,  $L_{\gamma}$ , ...,
  - M series :  $M_{\alpha}$ ,  $M_{\beta}$ ,  $M_{\gamma}$ , ..., - N series :  $N_{\alpha}$ ,  $N_{\beta}$ ,  $N_{\gamma}$ , ...,
- K<sub>α</sub>spectra frequency Moseley formula

$$\nu_{K_{\alpha}} = 0.246 \times 10^{16} (Z - \sigma_{K})^{2} \text{Hz}$$
  
$$\sigma_{K} \approx 1$$

**Provides a precise measuring method of Z** 

#### Interpret Moseley formula

- when n=1 shell has a vacancy, Es in n=2 shell sense the attraction of positive charges of (Z-1), and transit to the inner shell, producing  $K_{\alpha}$
- (*n*=2  $\rightarrow$  *n*=1) transition  $\rightarrow$  K<sub> $\alpha$ </sub> spectra freq.

$$\boldsymbol{\nu}_{K_{\alpha}} = \frac{c}{\lambda} = Rc(\frac{1}{1^2} - \frac{1}{2^2})(Z-1)^2 = \frac{3}{4}Rc(Z-1)^2 = \frac{3}{4}\frac{13.6}{h}(Z-1)^2$$
$$= 0.248 \times 10^{16}(Z-1)^2$$
Transition e fell  
attraction from-  
(z-1) positive charge

#### 6.2.4. labeling of the charact. X-ray





#### 6.2.5.Auger Electrons

• An external shell e transits to a vacancy, without X-ray radiation, tansfers its energy to another e in the same shell or outer-shell, and makes it escape from the atom



Kinetic energy :( $\phi K - \phi L$ ) - $\phi M$ 

#### 6.2.6.Synchrotron Radiation

- The radiation produced by es moving in a circular paths in a sychrotron accelarator.
  - A new type of powerful X-ray
- properties:
  - Width of enegy spectra 0.1~10 <sup>4</sup>Å
    - (continuous )
  - Big power : 10 kW; X-ray tube :10 W
  - Highly polarized
  - Well-collimated in direction

### 6.3. Compton Scattering

• In 1923, Compton proved the particle nature of x-ray in an experiment by scattering x-ray on matter

#### 6.3.1. compton scattering exp





#### Three Characters of the scattering curves

- Besides original  $\lambda_{0,}$ , there appear new bigger  $\lambda$   $\Delta \lambda = \lambda - \lambda_{0}$ - The increase of WL, depends only on  $\varphi$ , not on scatters and  $\lambda_{0}$   $\Delta \lambda = \lambda - \lambda_{0} = \lambda_{c}(1 - \cos \varphi)$  $\lambda_{c} = 0.0241 \text{\AA} = 2.41 \times 10^{-3} \text{nm}$
- With increase scattering angle, the intensity of original  $\lambda_0$  decreased, while that of the new WL increases

#### 6.3.3.Classical consideration

- Classical EW theory: when a EW passes through material, the scattered EM should have the same WL as the incident one
  - incident X ray exerts on the Es in atoms
    → Es oscillate with the same freq. as the incident wave

Fails to explain compton scattering

#### 6.3.4. Quantum Explanation

#### -X rays scatter on static external Es

- X-ray energy  $\varepsilon \sim 10^4 \, \mathrm{eV}$
- $\bullet\,\mbox{The bounding energy of external Es}\sim eV$

 $\rightarrow$  can be treated as free Es

- Elastic scattering
  - Energy and momentum conservation
  - Photon tansfers part of its energy to electron, decreases its energy and hence increases its WL

• E & P conservation  

$$\frac{hv_0 + m_0c^2 = hv + mc^2}{\frac{h}{\lambda_0}\vec{n_0} = \frac{h}{\lambda}\vec{n} + m\vec{v}}$$
Static free e  

$$\frac{mv^2}{mc^2} = m_0c^2 + h(v_0 - v) = m_0c^2 + hc(\frac{1}{\lambda_0} - \frac{1}{\lambda})$$

$$(mc^2)^2 = (m_0c^2)^2 + 2m_0c^3h(\frac{1}{\lambda_0} - \frac{1}{\lambda}) + (hc)^2(\frac{1}{\lambda_0} - \frac{1}{\lambda})^2$$

$$(mv)^2 = (\frac{h}{\lambda_0})^2 + (\frac{h}{\lambda})^2 - 2\frac{h^2}{\lambda_0\lambda}\cos\varphi$$

$$(mc^{2})^{2} = (m_{o}c^{2})^{2} + 2m_{o}c^{3}h(\frac{1}{\lambda_{0}} - \frac{1}{\lambda}) + (hc)^{2}(\frac{1}{\lambda_{0}} - \frac{1}{\lambda})^{2}$$

$$(mv)^{2} = (\frac{h}{\lambda_{0}})^{2} + (\frac{h}{\lambda})^{2} - 2\frac{h^{2}}{\lambda_{0}\lambda}\cos\varphi$$

$$(mc^{2})^{2}(1 - \frac{v^{2}}{c^{2}}) = (m_{o}c^{2})^{2} - 2(hc)^{2}\frac{1}{\lambda_{0}\lambda} + 2\frac{h^{2}c^{2}}{\lambda_{0}\lambda}\cos\varphi + 2m_{o}c^{3}h\frac{\Delta\lambda}{\lambda_{0}\lambda}$$

$$\Rightarrow \frac{m_{o}c}{h}\Delta\lambda = 1 - \cos\varphi \quad \Rightarrow \Delta\lambda = \lambda_{c}(1 - \cos\varphi)$$

$$\lambda_{c} = \frac{h}{m_{o}c^{2}} = \frac{hc}{m_{o}c^{2}} = \frac{1.24}{511} = 0.00243 \text{nm}$$

$$Agrees with data$$

#### Energy of scattered photon

$$\lambda - \lambda_0 = \lambda_c (1 - \cos \varphi) \longrightarrow \frac{1}{hv} - \frac{1}{hv_0} = \frac{1}{m_o c^2} (1 - \cos \varphi)$$

$$(hc)^{-1}$$

$$\Rightarrow hv = \frac{1}{\frac{1}{hv_0} + \frac{1 - \cos\varphi}{m_0 c^2}} = \frac{hv_0}{1 + \frac{hv_0}{m_0 c^2} (1 - \cos\varphi)} = \frac{hv_0}{1 + \gamma(1 - \cos\varphi)}$$
$$\gamma = \frac{hv_0}{m_0 c^2} = \frac{hc}{m_0 c^2 \lambda_0} = \frac{\lambda_c}{\lambda_0}$$

#### Kinetic E of the recoiling electrons

$$hv_0 + m_0 c^2 = hv + mc^2$$

$$\rightarrow E_r = mc^2 - mc_0^2 = hv_0 - hv$$
$$= hv_0 \frac{\gamma(1 - \cos\varphi)}{1 + \gamma(1 - \cos\varphi)}$$

6.3.5. The physical meaning

• Compton WL of the electron

$$\lambda_c = \frac{h}{m_o c} = \frac{hc}{m_o c^2} = \frac{1.24}{511} = 0.00243$$
nm

• When the E of incident photon equals the rest E of the electron

$$hv_0 = m_o c^2 \rightarrow h \frac{c}{\lambda_0} = m_o c^2 \rightarrow \lambda_0 = \lambda_c = \frac{h}{m_o c}$$

• *Wthen*  $\varphi = 90$ , the WL difference of incident and scattered waves

$$\Delta \lambda = \lambda_c (1 - \cos \varphi) \rightarrow \varphi = 90^\circ, \quad \Delta \lambda = \lambda_c \equiv \frac{h}{m_0 c}$$

#### Reduced Compton WL

$$\lambda'_{c} = \frac{h}{m_{0}c} = \frac{4\pi\varepsilon_{0}hc}{e^{2}} \cdot \frac{e^{2}}{4\pi\varepsilon_{0}m_{0}c^{2}} = \frac{r_{e}}{\alpha}; \ 137r_{e}$$

- Classical radius of the electron

$$m_0 c^2 = \frac{e^2}{4\pi\varepsilon_0 r_e} \rightarrow r_e = \frac{e^2}{4\pi\varepsilon_0 m_0 c^2}$$
; 2.8fm

#### Some discussions

- Why  $\Delta\lambda$  is independent of scattered material ?
  - Free electrons
- Why some of the scattered rays have its original WL?

#### *m*<sub>原子</sub> >> *m*<sub>光子</sub>

- Coherence : $\Delta \lambda = 0$
- Non-coherence : compton scattering

- Why there is no WL shift w/ visible light scattering?
  - $\Delta\lambda$  does not dependent on  $\lambda_0$ , only on  $\varphi$ ;  $\varphi=180$ , the maximum of  $\Delta\lambda = 0.0049$ nm; visible light with  $\lambda_0 \sim 500$ nm;  $\rightarrow \Delta\lambda/\lambda_0$  is too small
- Why the free electrons do not absorb, but scatter photons ?
  - If it do absorb photon

$$\frac{h\nu_0 + m_0c^2 = mc^2}{c} \quad m = m_0 / \sqrt{1 - v^2} / c^2$$
$$\frac{h\nu_0}{c} \hat{n}_0 = mv\hat{n}_0 \qquad \Rightarrow 1 - \frac{v}{c} = \sqrt{1 - \frac{v^2}{c^2}}, \Rightarrow v = c$$

#### Significances of Comp. Scatter

- -Provides strong supports for photon's quanta hypothesis
- Proof of photon's momentum
- -Verified that Energy-momentum conservation is still valid in single event of microscopic world,

6.3.6.Comp. Scattering & fundamental constants

$$\Delta \lambda = \frac{h}{m_o c} (1 - \cos \varphi)$$

 $\rightarrow$  measure  $\Delta\lambda$ ,  $\varphi$ , if one knows two of One can measure the other one

• Measure the energy of photon

$$E_r = hv_0 \frac{\gamma(1 - \cos\varphi)}{1 + \gamma(1 - \cos\varphi)} \quad \gamma = \frac{\lambda_c}{\lambda_0}$$

 $\rightarrow$  measuring E\_k,  $\varphi$ ,  $\lambda_0$ , one can obtain the energy of the incident photon

 $h, m_o, c$ 

### 6.4. The Absorption of X-rays

- Absorption rules
- Micro-mechanism of x-ray absorp.
- Absorption of x-ray

#### 6.4.1. Absorption rules of x-ray

- X-ray passes through material→ its intensity is reduced
  - $x = 0, \quad I_{o}$   $x = x, \quad I(x)$   $x = x + dx, \quad I(x) - dI$   $- dI = \propto dx \ I(x)$   $- \text{ Absorption coefficient } \mu$  $\rightarrow - dI = \mu \ dx \ I(x)$



Integrate over  $(0 \sim x) \rightarrow$  Lambert-Beer rule  $I(x) = I_0 e^{-\mu x}$ - Absorption length: x  $x\mu = 1 \rightarrow x_0 = \mu^{-1}$ 

• After passing distance  $x_0$ , the intensity is reduced by  $e^{-1}$ 

– Linear absorption coefficient :  $\mu$ 

• x 's unite cm,  $\mu$ ' s unite cm<sup>-1</sup>

• Absorbing matter density:  $\rho$ 

$$\mu x = \frac{\mu}{\rho} x \rho \text{ Mass thickness} \qquad \text{mg / cm}^2$$

– Mass absorption coefficient  $\mu / \rho$  cm<sup>2</sup>/mg

μ /ρ does not depend on the state of absorber (gas, liquid, solid)

– Lambert-Beer rule

$$I(x) = I_0 e^{-\frac{\mu}{\rho}x\rho}$$

## 6.4.2. Micro. Mechanism of x-ray absorption

- Photoelectric effect
  - Photons interact with bound electrons , being completely absorbed
- Compton effect
  - Photons scatter with free electrons (external shell)
- Pair production
  - When photon energy is larger than 2m\_0 (1.02MeV), photon splits into e-e^{-1} pair

## Relative importance of 3 major interactions btw pho tons and matter



#### 6.4.3 Absorption of x-ray

• Matter with mixed elements

$$\mu = \sum_{j} w_{j} \mu_{j}$$

 $- \mu_{j}$  the absorption coefficient for *j* element

the ratios of j element in the matter

#### Mass absorption coefficient versus incident energy



**Decreasing with the increase of incident energy** 

#### Absorption edges

Peaks for sudden changing Of  $\mu$ , corresponding to K, L, M...absorption lines From energetic x photon Removing K, L, M electrons Thus induces resonance absorption

