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6.1. Discovery of X-rays &
their wave nature



6. 1. 1. Discovery of X-rays

* In 1895, Roentgen performed an
experim.on a gas discharge in a chathode
ray tube in a darkroom, found a
fluorescent screen exhibited slight
fluorescence by a mysterious new rays:

— Traveled straight

— Strong penetrating power (neither retlection
nor refraction)

— Not deflected by a Magnetic field
— X -rays



* People realized that:

— X —rays are energetic em wave with strong
penetrating power

— X-rays are EM wave with short wave length
(L) :0.00lnm — 1 nm

- Soft x ray: L> 0.1nm

- Hard x rays: L< 0.1nm



6. 1. 2. X-ray tube (1)
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6. 1. 3. Wave nature of X-rays

* Accelerating charged
particles>radiate EM waves

* In x—ray tube, high speed Es stop
on the Anode=> radiate EM waves

« X-rays€<—2>EM waves

* Charaters of wave
- polarization, diffraction



6.1.4 Polarization of X-rays

* Transverse wave: oscillating direction
is perpendicular to the propagation
direction

- EM wave is transverse wave (E, K)
- PL concept only holds for transverse wave

* Linear PL: E oscillates along a fixed direction

e Circular PL: E moves along a circle
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6.1.5. Diffraction of X-rays

EM wave passes through a slit=>diffraction
(Slit size is the same order as Wavelength WL)

Typical A of x—rays :0.1nm (hard to build slit)
crystal: atoms (lattice) in ordered -structure

— B E Ed : crystal lattice distance is in the same order
as A of x—rays

crystal is a natural grating (set of slits)
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Interference btw parallel planes

Path difference btw ray 1 & ray 2

O =MP, + BN =dsin@+dsin6 =2dsind




Bragg Law

When the path difference is an integral of WL,
there exists a maximum in diffraction intensity

2dsinf = nA

(n=12,3,L )

.

Bragg formula




 Giving incident direction of X-ray, WL A and cristal->a
set of Bragg equations

— Many sets of crystal planes

— One set of crystal palne>one Bragg Equation

2d, sin@ =nA 2d,sin0, =n,A 2d,sin6, =n,A




Application of X—ray diffraction

- Giving 0, A , on can measure d
study crystal structue and properties,

- Giving O0,d , one can measure A
using X ray light spectra, to study
- Atoms structure

2dsinf = nA




Methods to observe x—ray diffraction

e Laue film method

- Using coutinuous WL X-ray to a single crystal
- Giving direction, arbitary WL
— Each set of crystal planes, satisfy |2d siné = nA

- Gives a Laue spot, the position stands for the
direction of the related planes =>obtain all
maximums. Each muximum has a bright spot




* Polycrystalline powder method

- Using fixed WL x ray on polycrystalline
powder , the planes directions are arbitrary

, the set of planes satisfing |24 sin@ = nA gives a
con-centric circle

- 2>many circles€&—->many set of planes




6. 2. Mechanisms for producing X-rays



0.2.1. X-ray emission spectra

X-ray emission intensity versus Wavelength

Continuous spectra:

The minuim WL depends
On applied potential
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6.2.2. Cont. Spectra—Bremsstrahlung

* Bremmsstralung

Charged particles in acceleration produce EM
waves

* C(Continuous spectra

—  X-ray tube, charged Es reach the target,
their speed changes continuously under the
Coulomb field of the target atoms, induce
cont. X—ray spectra

e The minimum WL depends on V
 X-ray emission due to de-acceleration



* A

min %

depends only on applied valtage J

— Obtained Kinetic energK thmnsfers to the energy
of emission photon s,

eV =l =h c A = hc 1 1.24 o
A e V V(kV)

planck A

min

\

Agrees with data

A

qin confirms once more the success of
quantum theory




6. 2. 3. Charact spectra—transitions
of the inner shell electrons

— Threshold energy or ionization energy:

for removing one e from n=1 shell

— K _spectra energy : energy difference from n=2
and n=1

— Atomic light spectra is determined by the

— External electrons , their configuration’s periodic
behavior leads to its periodic

— K_ spectra determined by transitions in inner shells



« Giving elements,charat. spectra contain several
series

— K series spectra: K_, Kﬁ, KY,
— L series spectra: L , Lﬁ, Ly, :
— M series : M_, Mﬁ, MY, cen

— N series: N_, Nﬁ, Ny, cee

* K_spectra frequency Moseley formula

v =0246x10"°(Z -0,) Hz

o, =1

Provides a precise measuring method of Z




Interpret Moseley formula

— when n=1 shell has a vacancy, Es in n=2 shell
sense the attraction of positive charges of (Z-1) ,
and transit to the inner shell , producing K

* (n=2 > n=1) transition> K _ spectra freq.

13.6

c 1 1 3 3
VKa = z = RC(l—z—?)(Z—l)z = ZRC(Z—l)Z = ZT(Z—I)2

= 0.248x10"°(Z —1)?
Transition e fell

Agrees with Moseley attract%o.n from-
(z-1) positive charge




0. 2. 4. labeling of the charact. X-ray

]
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K-Xray: final state on n=1(K) shell
L-Xray: final states on n=2(L) shell

K-X: K, KK,
L-X: L,LyL,
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6. 2. 5. Auger Electrons

* An external shell e transits to a
vacancy ,without X-ray radiation, tansfers its
energy to another e in the same shell or outer-

shell, and makes it escape from the atom

-e, auger e

Kinetic energy :(®?K -@L) -OM



6. 2. 6. Synchrotron Radiation

* The radiation produced by es moving in a

circular paths in a sychrotron accelarator .
— A new type of powerful X-ray

* properties:
— Width of enegy spectra 0.1~10 ‘A

(continuous )

— Big power : 10 kW; X-ray tube :10 W
— Highly polarized
— Well-collimated in direction



6. 3. Compton Scattering

* In 1923, Compton proved the
particle nature of x—ray in an
experiment by scattering x—ray
on matter



6. 3. 1. compton scattering exp
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6. 3. 2. scatter curves @ =0°

Experiment curve——

Scattered x—ray has
Original and longer
wavelenths

0.700  0.750 1 A



Three Characters of the scattering curves

— Besides original 4, ,there appear new bigger A
A A=A,
— The increase of WL, depends only on @ , not on

scatters and A, A)-= A=A, =2 (1-cos @)
A= 0.0241A=2.41x10"3nm

— With increase scattering angle, the intensity of
original 4, decreased, while that of the new WL
increases



6. 3. 3. Classical consideration

 Classical EW theory: when a EW passes
through material, the scattered EM should

have the same WL as the incident one

- incident X ray exerts on the Es in atoms
- Es oscillate with the same freq. as the
incident wave

Fails to explain compton scattering




6. 3. 4. Quantum Explanation

— X rays scatter on static external Es
e X-ray energy &~ 10° eV
* The bounding energy of external Es ~eV

—>can be treated as free Es
— Elastic scattering
- Energy and momentum conservation

- Photon tansfers part of its energy to
electron, decreases its energy and
hence increases its WL



* E & P conservation

hvo + m002 =hv +mc?

h - h- — Static free e
—Ho=, N+mv
Ao 0 A
1 1
me’ = m002 +h(v,-v) = m0(32 + he(—-—)

< P
(me)? =(m ¢ +2m0€3h(zio'%) +<hc)2<%o-%>2
2 iz ﬁz_ h_2
(mv) —(AO) +(ﬂ.) 2/10/100ng
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o

Agrees with data




Energy of scattered photon
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Kinetic E of the recoiling electrons

hv,+m c* =hv +mc?
> 2
— £ =mc” —mc, =, - hv

1 —
_y, L(=c059)
1+y(1-cosp)




6. 3. 5. The physical meaning

* Compton WL of the electron

A=L= hc =1.24

, . = 0.00243nm
mc mc- Sl

 When the E of incident photon equals the rest E of
the electron
2 C 2 h
Wwy,=mc —h—=mc" = A =4 =—
A, mc
* Wthen ¢ =90 ,the WL difference of incident and
scattered waves

A= . (1-cosg) = @ =90°, Ad=7, =—
m,cC



Reduced Compton WL
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Some discussions

* Why AA is independent of scattered
material ?

- Free electrons

* Why some of the scattered rays have
its original WL?

Mgy >> Myx

— (Coherence :AA=0
- Non—coherence : compton scattering



 Why there is no WL shift w/ visible light
scattering?

AL does not dependent on A, only on ¢ ; ¢=180,
the maximum of AA = 0.0049nm; visible light
with A, ~500nm; - AA/ A, is too small

*  Why the free electrons do not absorb , but scatter
photons ?
— If it do absorb photon

hv, .

2
_ A v / V
n, = muvon, =1-—=,1-—, =v=c
c c c




Significances of Comp. Scatter

- Provides strong supports for photon’ s
quanta hypothesis

- Proof of photon’ s momentum

- Verified that Energy—momentum
conservation is still valid in single
event of microscopic world,



6. 3. 6. Comp. Scattering &
fundamental constants

h
AA =——(1-cosp)
m c
> measure AA, @, if one knows two of h,m e

One can measure the other one

 Measure the energy of photon

7o y(1-cos) , A
o 0 -
14+ y(1-cos) Ao
2> measuring E k, @, A, , one can obtain the energy of
the incident photon




6. 4. The Absorption of X-rays

* Absorption rules
 Micro-mechanism of x-ray absorp.

* Absorption of x-ray



6. 4. 1. Absorption rules of x-ray

* X-ray passes through material-> its
intensity is reduced

x=0, I |‘71 4-|

x=x, I(x)

x=x+dx, I(x)-dI

- dI= o« dx I(x) 1

— Absorption coefficient
<2 -dI= u dx I(x)




Integrate over (0 ~ x)> Lambert-Beer rule
[(x)=1e"

— Absorption length: x -1

xpu=1—x,=u

* After passing distance x,, the intensity is
reduced by e !

— Linear absorption coefficient : u

ex ‘s unite cm, #’ s unite cm’!



* Absorbing matter density: p

u
Hx —XP/ Mass thickness mg / cm?

— Mass absorption coefficient 4 /0 cm?/mg

* u /p does not depend on the state of
absorber (gas, liquid, solid)

— Lambert-Beer rule

I(x)=1e "



6. 4. 2. Micro. Mechanism of x-ray
absorption

 Photoelectric effect

— Photons interact with bound electrons , being
completely absorbed

 Compton effect

— Photons scatter with free electrons (external
shell)

e Pair production

— When photon energy is larger than 2m_0
(1.02MeV), photon splits into e-e”{-1} pair



Relative importance of 3 major interactions
btw pho tons and matter
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6.4.3 Absorption of x—ray
e Matter with mixed elements
u=>ywu,
J

_ U the absorption coefficient for j

el\éipent

—~ ths ratios ¢f j element in the matter
J



Mass absorption coefficient
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Absorption edges

Indicating the shell
Structure of Es

Peaks for sudden changing

Of u, corresponding to

K. L. M...absorption lines

From energetic x photon

Removing K. L. M electrons
Thus induces resonance absorption
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